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Abstract

This paper presents a fusion model called Systemm@ation by Fusion of Information (SOFI) which is
derived from Bayesian networks. It is designedmiprove user decision-making through the help ofrtioee
active and powerful Decision Support System (D38} is used to reduce the “Information Gap” foradat
mining applications. We show here the interestipgraach for data mining to integrate the SOFI fosio
module into a data mining platform taking the eximpf o a new platform called Track Toolkit gatimeyi
decision tree, cluster tool and neuronal netwolks Ppaper specifies the SOFI software which is mlioing
classifier tool and which can be integrated in gvkind of data mining platform that gathers several
classifications coming from data mining tools.

Technically speaking, we introduce here an origmahner to both learn and build automatically atrehal
graph to represent the information. We focus owsentation over the logical process and review the
components of data mining technology to providentiaerial for fusion that is used to discover krenige and

for which the a priori information is integrate@gtby step. Then the purpose of the SOFI model i®mbine
decisions to deliver one classification optimisthg whole of both knowledge and decision discovendu
SOFI generates automatically a General Bayesiawdtkt(GBNSs) classifier optimised by a stochastiogass

in order to discover decision rules into data.

We reserve a large section for the SOFI applicattbith is dedicated here to produce a model ciaasibn
for forecasting problems. This part shows that B@F| is especially designed for the Knowledge Bisty
in Databases (KDD) and has the advantage to eeafizath separated decision and to propose a quiekato
a synthetic result for the end-user being ableetiuitd a complete analysis. We compare the rémiitreen
some other data mining technique like cluster aexlsibn tree and illustrated by SPSS modules. Welade
with the model performance of the SOFI model.

1 INTRODUCTION

This paper presents a fusion model called Systemm@ation by Fusion of Information (SOFI) which is
derived from Bayesian networks [1]. It is designedmprove user decision-making through the helghef
more active and powerful Decision Support SysterB8§Pfor data mining applications. It is taking as a
example the data mining platform called the Tradolkit (*), which provides the fundamental component
processes in data mining used to manage tempotalfdathe knowledge discovery. The fusion condspt
used on such workstation in order to optimise tm®wkedge gathered through classifications and/or
segmentations on a given set of data (see [2]yderao gauge expert knowledge by gathering eveefs by
step. Fusion gain is the increase in the qualityawdilable both information and knowledge for a eyah
Knowledge Discovery problem (see the report sunmsearstate of the art in [3]).

1 TRACK is an ESPRIT project (European Strategic Pmogiar Research in Information Technology) with sepentners
involved in its development: three industrial safter developers companies from Spain (IbermaticK) (AhiteSystem)
and France (Isoft), three representative financ@hpanies form each country (Banco Santander, NAlide, Caisse
d'Epargne) and the ITC R&D Institute.



An example of the use of these data mining platéprtaken from the financial sector, is the effextitop-
down strategic systems planning” which is complaeerby fast-track technology: return of investment
measures, predictive style, pro-active stance, Atalyses can be made by the step by step integrati
automatic data processing and natural feedbackdardo locate the knowledge appearing in the dBite.
useful of the data mining platform can be seen th® well-know churn problem initially investigatddr
telecom applications to detect and predict theiaripreason of changing customer’s behaviour (seergst
others [4]). Method to answer is processed in treps first process given customer valorisation sexbnd
given customer activities, both are measured aassified. First step consists to both discoverciligtomer
profiling with their social states and score thkaf#e set of customer for generating a significantl macro-
economic return of investment measures. This aealged clearly a calculation module which integra&teery
kind of both numerical and logical functions implemted within the data mining platform to perforror f
example, the Life Time Value of each customer. Afteat, segmentation and/or classification procass
required to specify the expectation group ontovthele of customer. Second step, cumulating theohiést
marketing data of the customer, data mining tosl#ha decision tree are used to detect the aatidaa-active
population calculating the predictive the followifartors of the attrition: as linear lowliness camsnation,
artefact into the behaviour changing the initiadqarct by a cheaper product, number of calling resgkio the
customer attention service, do not pay at timeam&wer at the cumulated advantage offered from etiack
department. End-user result is, using the SOFI| meodlie optimisation between the numerical datasunéag
both the customer value and risk activities and,symbolic data showing the groups of both custaei@ble
and the level of activity for the company. Clagsifion combination allows the end-user to sepatfaté
reasoning in sub-task and takes the optimal decf#dling the optimal set of customer marketingyér This
method for stopping the customer “churner” is impdmted in a European CRM company.

The interest of the fusion process appears foCthkne analytical processing method [5]. EffectiveDLAP
delivers a multidimensional cube which describes dependency between variables in order to discover
knowledge. Fusion is done here to reduce the diimealy problem of the OLAP approach (also calledA®

data mining) and reduces the data solution spa@gbsegating a priori pre-analysis and focusingsiiation

in an appropriate way (the reduced data space aoididn space is here called System Informatioretay
SIL). Track toolkit appears here as an intelligeser friendly data mining OLAP. The final process i
concluded by the combining classifier allowing 82uto have access at an optimised view integrésrgvn a
priori knowledge.

Then, many data mining tasks can be viewed asifitas®n each described by a set of features. hiegr
accurate classifiers from pre-classified data éghrpose of the SOFI model showed as a fusiomalfyses
and based on ICA technology (see the IndependempGoent Analysis in [6] and [7]). We detail in tipiaper
the whole fusion process which includes everyttogn the data both measurement (data preparatiod) a
expert decision scheme to the optimisation schémé parts, we specify the general data miningfiat and
the material for fusion, the type of measure usedvialuate a single classification, the Bayesiatwiiek for
fusion. We present an original application of aetiseries analysis problem.

More specifically, section 2 deals with the fusibesign within the toolkit. First, it is reviewedetltoncept of
expert which refers to everything from individuatd mining technology to end-users offering an yaigl
based on specific knowledge and/or experience. rgiy,0SOFI model is introduced as a mixed fusiordeio
(or a multi-dimensional classifier, see [8]) whiektablishes a link between the informational canténa
database (numerical data source) and the knowlpdméded by a set of experts (symbolic a prioriajat
constructing the SIL space and avoiding the wetlvknlearning phase problem. Thirdly, we detail the
architecture which is centralised and applied toe accumulating partial analyses in parallel. $acts
describes the mathematical formalism of the acguraeasurement of the independence between thef set o
classes which is the degree of explanation of theses by the numerical variables. We take heremibst
useful function to measure the dependency betwkessis coming from [9]. Section 4 deals with the psxcof
fusion by introducing the General Bayesian Netwi®8Ns) model [10]. A GBN supports the information
(SIL space) and is the material to consult knowéedgd to merge information (see, amongst othersdad
for a general view [12]). We then deduce from tf@ementioned model a mechanism to consult andiatal
each individual analysis. Finally, we introduce dmnmonly process used for the energy minimisattaxing
independence assumptions for a combinatorial pneblé is specified the calculus of the probabiliy
transition between two states which is guided &y ghmbolical knowledge coming from the experts.idius
benefits are obtained by the reduction of the smiuspace thanks to the building up of intermedseps of
knowledge.



In order to illustrate the process of fusion, wketthe example of a time series analysis problesedation 5. It
deals with the medium-term forecasting ability @afrieus volatility models in the foreign exchangerket
Advances in time series modelling such as, amarthstrs, ARCH/GARCH and/or stochastic volatility nets]
have made it possible to integrate the time-varyiature of volatility and correlation and thus &ax such
embarrassing assumptions as constant volatilitycamgtant correlation. The predictive power of salvéme
series models of currency volatility (homoskedasiBMA, GARCH and stochastic volatility) are considd
here, using daily data from January 1991 throughciMal999 for 6 major exchange rates: DEM/JPY,
GBP/DEM, GBP/USD, USD/CHF, USD/DEM and USD/JP¥ [62]. Using the Track platform, fusion
involves a readable classification of the dataeseforecasting models according to criteria of granfince.
Results are compared between results coming froth bapervised clustering tool and decision tred too
illustrated by SPSS graphic module.

In conclusion, we summarise the characteristicthef SOFI model which uses a non-supervised learning
method and non-parametric formalism on both nurakffeariables to be explained) and symbolic data (t
analyses involved by R experts). We conclude bytittne CPU performance which is good for particular
application.

2 DATA MINING PLATFORM FOR FUSION

The Track toolkit mechanism is designed to aggeegatalyses made in parallel. Two basics steps are
considered in this section: 1) data collection dath preparation delivered by R analyses, 2) dadaviedge
discovered and analysed through fusion, makingothiEmal link between data sources and the R aiprior
knowledge sets. The fusion functionality is thatacfearch engine designed to integrate all kindsywibolic

and numeric information [14]. We briefly review tlwverall quality of this kind of platform througtne
definition of Expert, the fusion techniques and a@inehitecture of the fusion process.

2.1 Expert Specification

The general objective of data mining tools is tearsh for the desired state of a vector in a sqirofile
identifiers. Therefore, an individual data miningchnology is a sensor, which filters both symbalitd
numerical vectors of information in order to insealculus into the data, adding measures of inféomdor
the understanding of the data set. Data miningstamfolve either a scalar number solution (for epkm
scoring identifiers by a value into O to 1) or &id®n label that enhances the meaning of eacls aas more
formal language (i.e. label "AGE > 32" gatheringpple who are more than 32 years old). To have gpatm
data mining platform, some data mining tools arednevhich should be able to manage, filter and ptoje
temporal data in one scalar measure as has beerirdtre Track Data Manipulation Module (TDMM).

Each individual tool uses both its number of par@nse decreasing or increasing in system performazied
its ergonomic interface to increase the usersqipation. New software production is designed teehthe best
compromise between time processing and data vésui@n allowing the users to have access to thersgs
solutions with the degree of accuracy that thewireq Most of these tools use a specific technglagy.
neural networks, genetic algorithms, inductionfistias to resolve the problem of the optimum cheesstic
choice of a data sample. The best way to resolyech process would be a statistical one (Systet, Spss)
and to resolve a KDD problem, it is preferable se the hierarchical modelling of a figure tree tihablves a
particular point of view of the database (Decisiore, OLAP, Bayesian Network). Artificial Intelligee and
Expert Systems manage database knowledge by usitexgules for rapid decisions integrating the byfit
information (inaccurate and uncertain informatio8yipervised Learning Neural Nets have been amdhgst
most universally applied and successful neural odtwnodels, with applications in many industriebey are
used for modelling complex processes, forecastimtydecision making where historical data is avédlgbee
[15] for a comparison between Neural Network and a &axeighbor for classification). This kind of tool
has a bad reputation for being a black-box butdd@ made more user-friendly through the use optada
methods along with prior knowledge that takes fumtg forms. Artificial Intelligence systems compatith
statistical and stochastic processes in the racéntibsolutions for encoding, computing and arattiteal

2 \We use the notation of the International Organisefor Standardisation (I0S), respectively DEM/J®¥the Deutsche
Mark against the Japanese Yen, GBP/DEM and GBP/U$Eh&Deutsche Mark and the US Dollar against theni
Sterling, USD/CHF, USD/DEM and USD/JPY for the Swigsnc, Deutsche Mark and Japanese Yen againdt$he
Dollar.



flexibility. Besides, statistical systems displaynamber of difficulties in interpreting results an natural
language and systems using reasoning have weakotorer the true measurements. There is a sigmific
number of different approaches taken by commengals with the aim of identifying clusters of data
behaviour. Their goal is to allow for populationgseentation and decision analysis. Hence, for theesa
application, the individual software calculatioasaly give a consensus solution (see [16]).

An expert is a mechanism sensor-user which incee8bannon’s entropy (an increase of knowledge) fand,
data mining purposes, provides a X-out-to-Y matghalassification witHX|>|Y| such that X is the data set and
Y is a classification result in a labelling spateWe propose in section 3 a measure deriving frbn, fwhich
takes into account the intrinsic "depth procesgtus lead to the evaluation of each classification

2.2 Data Fusion Techniques

Each model that synthesises knowledge refers téulien concept: see, for instance, mobile robStar{ford
Mobile Robot, Crowley's mobile robot [18], [19])edse co-operative environment systems used by the
military investigation for targeting information rtugh diagnosis and control [20], [21], [22], medic
applications (Mycin system) and multi-temporal apations [23]. Above and beyond the great hetereiggn

of the applications, some research teams try te gigcientific definition of the fusion concept &rda set of
concepts defined in the following manner [24]:

1) Data Fusion consists of data streams of rowsorements coming from different sensors. For
financial data, marketing departments building jeofrows (or Identifier) according to some
characteristic fields would do this.

2) Feature Fusion concerns the combination ofifeatextracted from a set of rows. Here, we spéak o
topology features for data mining purposes. The plerity of the features is intuitively measured
according to the profile discrimination charactgesdelivered by an expert.

3) Decision Fusion is directly related to the maimrpose of the SOFI model. It is the process of
combining partial, soft or hard decisions that ineothe relevant features introduced by the difiere
experts.

The data source and the number of analyses (ngt&) provide the material for the fusion for SOHENce,
the data fusion problem could be expressed as @iakecproblem concerning a proposition truth or a
probability coming from different experts (see, éogeneral view, [25]). Therefore, the challeng®itake into
account the complicated character of the infornmati@dundant, complementary analyses with inaceurat
incomplete and uncertain information. In the litara on the subject, the fundamental choice betweeaaels

is still analysed and the Fuzzy set approach [p4]], Evidence Theory [28], [29], [30] or the prdiiléstic
view [31], [32] are in competition. In [33 method combines several Neural Networks and shbuaisthe
performance of individual neural networks coulditmroved significantly. The main difficulty with a$sical
data fusion techniques like [34] is that these m@shrequire the estimation of a lot of paramefé€rey often
require statistical NP-Complete tests as the NeyRearson Test [35] or Bayesian rule [36]. Then, ehodlust
be either non-parametric or parametric. Industrégjuirements justify the use of non-parametric mesh
which open the way to fast algorithms in orderitectly estimate a classifier from the data [9].

A specific fusion model should be agreed with tdjective synergy” terms due to [37]: "fusion ifoamal

framework in which are expressed means and toolthéoalliance of data originating from differeotusces. It
aims at obtaining information of greater qualitye texact definition of "greater quality" will depkapon the
application. For our purposes, the quality resales in decrease of error measurements and perfarona
disturbed information system. For data mining, agee quality” would be defined as the best deciside. For
our application, a rule appears when it optimibes'tepth process" viewed in section 3.

The initial X-out-to-Y problem resolved by each erpis the same for fusion but with a different idem
space called System Information Layer (SIL). Slloksained by projecting the data into the samesit@ti
space (see a similar view in [38]). It will be peated in section 4. The SOFI process becomes tlosving
matching problem: SIL-out-to-Y* with Y* being a pgaular combination of the R classifications (cuative
learning) used to produce a set of independens.rdlbis involves a specific model of fusion of dimtited

experts, which can be viewed as a multi-dimensiolzssifier [39] using the GBN technolofg0] and j1].



2.3 Architecture Work Flow for Fusion

In order to initialise the SIL-out-to-Y problem, tdamining platforms involve efficient systems ifeus
objectives are taken into account. Users wish tadben their general knowledge of their own daterder to
include multiple strategies and, also, to targetvidedge.

e Population Segmentation; the tool analyses infaonah the database from which individuals share
similar characteristics.

« Decision Data Analysis: a decision support toolkiby be more appropriately used to design a
decision procedure that forecasts the behaviow pérticular or new individual, or to explain the
variation of certain variables against other vdeab

Then, in order to reach a solution, the SOFI modifiers the following scheme which accumulates Ralbal
analyses (figure 2.1).

Data Source A priori Data Fusion
X-out-to-Y 4
X-out-to-Y o
Data Measured: —3p1 SIL-oul-to-Y*
X
X-out-to-Yr

Figure 2.1: SOFI manages both Data Base information (Data &®X) and R parallel analyses
(A Priori Data); SOFI module evaluates each indiadl analysis and optimises a global
solution according to the objectives establishedhgyuser (multi-classifier).

To avoid the complexity of the fusion architectfoea serial aggregation flow, a parallel schemegiired to
obtain feedback in order to eliminate the experttocadd new ones and experiment the “when” thofus
appropriate. In this case, fusion consists of datmg a final score by mixing a partial one in associative
way. Then, the user explores the data accordinghé questions used to direct the search for the
dependencel/independence between identifiers arabies in order to gauge decision rules.

The notion of dependency is well supported by tlagdBian model which integrates the complexity @f th
information system by the statistical relationadmt [42]. A graph provides an efficient method feasoning
([43], [44], [45], [3]) and allows data mining platforms to integrate trtgpes of information [46]: trees,
rules. The four Lukasiewiez's laws allow both l@dicelations and probabilistic interpretation gerieg a
GBN: negation, implication, conjunction and disjtion. As with the connectionist approaches [47], a
mathematical module of fusion is given in ordeririolude R analyses into a symbolic-numerical retai
graph that contains the topological link betweelued objects [48]. The system of integration obimfiation

is done by the re-normalisation of nodes in a i@hal graph. This dual graph is deduced and alltavs
formulate the probability link onto the frameworihich will be described in section 4, as a Bayesiatvork.

3 MEASURING EXPERT MODELS

Let X be the original data set rearranged according toiNmeasurements described by M random variables
,,,,,,,,, w X is associated with a distance measuring the dissity between two

records, according to the M characteristics. Thaists a functiorp which associates the populati¥rin a set

Y and gathers the records according to selectedsfiahd constraints. For our purpos¥sd O is a

classification of a finite class number K assodatéth a label vectorY ={ Y, Y,, ..., Yk }. O is a part of the

discrete finite spac8® (K O N”). The marginal partition such ag ¥Y ki }j=1.., mis defined by the upper and

lower boundary values of the M variables:

(1) Ok={1,2, ..., K} Y= ({ Y=Y 5 Y%) b= €(K) )



with a label c(k) of the class k. The lattice gexted by the K classes described by, (%)called System
Information Layer (SIL). The SIL format could albear temporal variables. The truncature Min-Mareobjs
also called Hoxel (High Order of pixels [49]).

Each clas¥ cuts the hyper-cubX¥ over the M directions. The "greater quality" afoemntioned in section 2,
is calculated according to the discrimination powkthe class k. This would be the "depth processierated
by an expert. Then, the underlying mathematicabltygsis of each individual technology producesctiiteria
that the functionp optimises. To enhance the evaluation of expents,probability measure is introduced in
order to deduce a general formula, which will befihal decision rulep.

3.1 Measure of Reference

Let @ be a positive function. A configuratiofioverX is the applicatiorp such that:
3"x3K L 37 (xy) - @x.y).

Let the probability model be §,y)) = exp(-max@(x,y).€)) (€>0) (see [50]). The functiop can be estimated
as a Chi-square distribution considering the refeggrobability equal to the frequency density:

H(Y) =NJ/N  with Xy kR (Vi) =2k, kNW/N =1

with Ny the number of identifiers contained in the clagsber k.u(Y\) will hereafter be referred to gr We
draw up a number of N rows, which cover K levelepérgy. The probability of the N-Training configtion
is equal to the multinomial law:

) PO(Y)) =M ket k" = exp(-N.(D(P ) + H(P)))

where Pis the empirical distribution, H(P) is the inforrimat rate of the distribution P (Shannon Entropy)l an
D(P ||y) is the Kullback Leibler Entropy measuring thestdince” between both the probability distributiéhs
and J (see [51] for a complete description). In the cted the distribution Fhas a great probability to be
repeated, the state of P is called "type" [52] #reldistance betwegmand Pis close to zero implying the
probability model R(x, y)) = exp(-N.H(P)). Focusing on the set of thygpe" series distributions noted T(P),
the probability for having only the distributiongrecentrated around thedistribution is such that:

P@x,y) / T(P)) =n(P) . exp(-N. D(R)[)

where n(PYJ [1/(N+1), 1] ¢). This can be re-written using the law of largenbers whem is close to P w/P
= 1+¢/P. Using the development of the log in the Kullbdeibler formula, we derive the Chi-Square
distribution. (see, amongst others, [53]):

®) @x, y) = log[P@x, ) / TP)] = N.Z 1.k (M —R)T W* - XZK—l

Then, this formula is the(x, y) positive function that evaluates the clasaifon Y and corresponds to a Chi-
Square distribution with K-1 degrees of freedomisTis used to formalise a Chi-Square test for whach

classification Y has a distribution P closetdf (X, y) < Vq. V4 is read in theXZK-l table or calculated from
the Wilson-Hilferty’'s Chi-Square approximation fautae.a is the probability threshold fixed to 0.05.

3.2 The Decision Rule

Taking the hypothesis that the best model is tHathvconcentrates all elementdxX in K classes without
ambiguity, the research probability is the restihe independence between the classigst k', P( Yy, Yy¢) =
P(Y,).P(Y,). Defining the complementary cla$g, such thatlY, = (. Y, the conditional probability /=
P( Y/ 1Y) is calculated by a counter function such that Ri/N with =Y, 5 x { x/ P(@ (X, y)) > O} and

3 Using the thermodynamic multiplicity N//¢N N, ! ... N¢ !) and the Stirling approximation when one onlysiders the
typical series P.



the reference distribution calculated bl = >, o v« { X }. Using the (3) aforementioned formulae, the
evaluation function of a classificatiohis equal to:

(4) X, Y) =% jer,k (Nie/ N = N/ NP (Ne/ N)2= Z ey (Ni /N -17 < K

with Ni/N, < 1.Therefore, a good solution is whengPandN/N (is equal to 1 for each class and involves the
independence between two classgss R« = N /N. If @(X, y) = K-1, there is functional dependency betwee
the K classes: PY/ 1Y,) # P(Y,). Practically, the SOFI process looks for the mimin expectation using the
weight N/ N of the class (see similar decision rule in []3}]).

3.3 The Depth Procesg

The @ function is a Chi-Square for an arbitrary numberofwariables. That is also true for every marginal
direction of the hyper-cube,YThe model becomes:

%) O Y) =Sk k- Zj=1..m(NG/N-17 < M.K

The @(x, y) follows aXZd:inf(M_l,K_l) distribution. Then, there exists an intrinsic vatne< M which isthe

number of variables having the independence hygitaecepted by)(2 d=inf(M-1,k-1) test.m is the measure

of the depth criterion of the function (measure of the discrimination power teé @ function), which has a
value lower than (Mm).K+m.V,. An expert discriminates variables in K classes and can be either a “simple
Expert” (m = 1) or a “complete Expert’nf = M), or somewhere in between. Then, optimisatioal gs the
reducing correlation between classes for all nucagriariables.

A simple expert would separate groups accordingrte variable (poor criterion). For example, an expe
would ask about people’s age: “people that are éetm8 to 30 years old are put in a group (younglego
another group of people that are between 31 t@Bl&( people)”. An expert with a depth equahis2 would
separate the people’ classification in new subgsolyactically, decision trees allow to move froime
experts to complete experts. In fact, trees metlobdsacterise a population’s subgroups by highghtheir
most distinctive criteria. It automatically breatkswn the whole population into groups, and grougis sub-
groups, integrating variables step by step. Degisiees are often used for the learning phase &ye8an
Network.



4 BAYESIAN NETWORK FOR FUSION

This part focuses on the aggregation of R classifiéirst, we analyse the expert flow aggregatioa,structure
of the graph underlying the network {SIA} where each node I SIL represents a domain variable and
attribute, and each arc inf® between nodes represents a binary link. This grapteduced from the dual
graph of the expert matching. The Bayesian Netvwsrkompleted by the training phase of a the cooli
probability of nodes measuring the dependency ketviikeem. Finally, we introduce the merging nodecess
for synthesising R classifications and minimisihg @ function.

4.1 Graph Representation

matrix of edgeS ( [Tiaer [Kr| X [Tierr |KT| ). Let ¢(K) = {k/, k2, k3, ..., kI“™ be the label vector coming from
the classification Yof the expertr.

The dual graph of is G = {SIL, A} defined by the SIL space which gathers K nodehdhbat K is the number
of separated vector labell Y, , Y, O SIL, Or k # k', .This is the operation of the intersection (or
disagreement) between the experts. The numbeiireigor or equal to the product ¥[].<< |Kr|. Each node
of the G graph coming from the definition (1) idided as follow:

(6) Ye= ({ Yig= (Y 5 Y5%) Yeroms e(K) = {k"@, ko "@, L k"R )

The space SIL stores the K classes and is themegaphere\ is the matrix KxK:A = 1 if Or such that k=
K',. Figure 4.1 shows the underlying network displaggdhe graph (the sub-matrix of the expert r beifg)
and the dual graph G.

Graph G involves the K chains of length of R in graphl’. The space SIL regroups all connections coming
from the fine knowledge derived from the R analys&®ph G increases in size according to the iseré@athe
number R of experts. It is as if new data were dddea message of length R. Let Be a graph associated
PR log(P}). The marginal information rate of a new experthie difference H(®-H(P™™). If this value is
close to 0, the graph resulting from the aggregatb a new expert does not grow much (redundancy of
information and high dependency between expertisols). If the application introduces an expert thas a
different analysis, the above difference betweeaplys is large and the amount of knowledge grows
significantly. Therefore, the space is finite andlrge R, H(P) = log(N).

The choice betweeh and G graphs made for the computing phase caribe according to the application.
For the first representation (grapt), the size of the matrix always increases with a new expert. We
commented before that it is not the same for gri@pim the case of redundant experts. Thereforedtia
mining applications involve analyses with a smalinter of classes. Then, the representation graps G
preferred to graph.



r

Expertq = c(1) = {ki*, ki

— 1 2 3
Expertq:rzz —» c(2) = {k>", ko .k>"}
Expertq - ¢(R) = {ks", ke2 ke

G

Figure 4.1: Matching of R classifications going from thegraph to the dualG graph having 4
classeswith c(Yq) = {ki', ko, ..., ke'} c(Y2) = {ki% koo, ..., k), ©(Y3) = {ki ko, ..., k), c(Ya)
= {k12! k231 ey lq?s}'

4.2 Graph Measurement

The Bayesian formalism allows the process to deterrthe decision risk as measured by the fusiothef
model data. The probabilistic space Z, ) associates an event and a meapuoe the L random variables. It
is a Bayesian network if and only if there is a&bijon between the events and the nodes of grapitihe
following property:

H(Yi) =M= rP(K/V(K) ) with  Ze-n ki (Yi) =1

where V(K) is the neighbourhood topology performed by theepainodes i . According to the graph G, each
chainYy is estimated by the marginal function:

(p(X, Yk)= ijl M(Nkj/N kj-l)z < M

The solution of the expert number r is given byftikowing mechanism: for two node§, andY, 0O SIL, if
Kh=k", thenA' x = 1. Therefore, each expert projection is caledats:

(7) Y() = (Yo, oo, YA ={Ych)} h(r) =1,... ke

wherech() is the class that gathers all With the label k: ¢ ney={ Y« / k=K' } (). Then, the evaluation is
done by the min-max filter in order to recalculaseh group of Kclasses.

4.3 The SOFI Fusion Process

Fusion goal is to deliver a classification whiclnimiises thep function of the R aggregated classifications. Our
work derives from [54], [55], [56], [57], [40] an&O0]. Each expert delivers a classification Y (rpsim in (7)
evaluated by the (x, y). Regarding the R classifications, an infere scheme is deduced from the research of

4 Each classification can be viewed as optimisiregrtiean-square error among all linear orthogonastoams.



the distribution of P* which performs the minimurhtbe Kullback Leibler ). The@ function is minimised by
the following inference:

P* = argminpop[ @ (X,Y) ]

According to the projection formulated in (7), tf@lowing mechanism allows the distribution P(t) be
"visited" and estimated at the iteration t. We ldokthe stationary state of a Markov chain such as

Y(0) - Y(1) - ... - Y(T) = Y*
P(Y(t+1) /Y (1)) = exp{- Y(t+1).(A " - A0}

with Y* involving K* classes minimising the functiog. Several strategies can be used to analyse tice siha
the solution. For our purpose, the optimal solutionsists in discovering the K*-area of the grapfsée, for
example, [58]). These problems are NP-complete camdonly be resolved by stochastic strategies sisch
Monte Carlo or algorithms derived from it like sitated annealing. This algorithm allows the solutiorbe
found for applications having a large number ofesdlhe basic SOFI algorithm is:

1- Random initiation of the matri&(0) and estimation of temperaturdd by the variance of the energy
of the experts: let Y be the current classification
2-  Choose randomly a label, land connect every point of the SIL having thiselalperformA(t) (D-
separable process)
3-  if1/B(t) > 1.
Calculate the projection y(t) agd(x, y(t))
If Ap =@ (x,y(1)- @ (X,y) <0, the new position is accepted-yy(t)
If Ag =@ (x,y(1)- @ (X,y) > 0, the new position is accepted with thelyability
U < exp(AgB)
1B(t) - 0.99p(t), goto 2
otherwise Iterated Conditional Mode algorithm (I ¥hen go to 2 if B(t) > 10%, else END.

Step 3 of the SOFI algorithm uses the ICM in ordeimprove the position for () < 1 after having found a
global solution for #(t) = 1. We have tested numerous possibilities to aaalys solution space (step 2 in the
SOFI algorithm) as a kind of k-nearest neighbogoathm (used to analyse the K combinations). légond
the scope of this article to go into this in moetail, but the above algorithm has shown robustia@ssa
minimum value function that was always better théth other strategies.

5 APPLICATION OF THE TIME SERIES PROBLEM

In this paper, we examine the medium-term forengstbility of several alternative models of curngnc
volatility. The reader can find in [6] the descrgpt of the data and the economic impact of foreéegst
volatilities. The data period covers more than eigtars of daily observations, March 1991 - Decanili®®8,

for the spot exchange rate, 1 and 3-month volatdit the DEM/JPY, GBP/DEM, GBP/USD, USD/CHF,
USD/DEM and USD/JPY. Comparing the results of ‘ptirae series models, we investigate whether market
implied volatility data which could add value irrries of medium-term forecasting accuracy. Basecherover
34000 out-of-sample forecasts produced, evidenudst® indicate that no single volatility model eges as

an overall winner in terms of forecasting accurday. our purpose, the problem is posed as following

« How do the models fit out-of-sample and is thetgrency by currency (in fact, we should say vaigtiby
volatility) a better (or several better) forecagtmodel(s)?

« Do market implied volatility data and model comlioas each add value in terms of forecasting
accuracy?

< Finally, are some currency volatilities ‘easierftwecast than others?

® This is given by Shore and Johnson axioms: UnititBm (convexity function), Independence betwelea $cale (every
kind of SIL space), Independence between Knowlddggarable law), Partition Conserved (every pathefSIL space).
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This is a typical Knowledge Discovery and data minproblem resolved here by the use of both thekira
Toolkit managing the database and the SOFI modadinge7 experts. This experimental part contairnth Ibloe
data presentation and manipulation, and the fotlegasnodels presentation. After this, we focus our
experimentation on the aggregation of the knowledgerder to merge characteristics and find modeisld

be considered either good or bad.

5.1 Volatility Data Processing

The return series we use for the 6 major excharmgesrselected, DEM/JPY, GBP/DEM, GBP/USD,
USD/CHF, USD/DEM and USD/JPY were extracted frorhistorical exchange rate database provided by
Datastream. Logarithmic returns, defined as Bpd(P.;1), are calculated for each exchange rate on a daily
frequency basis. We multiply these returns by HaOthat we end up with percentage changes in thieaege
rates considered, i.e.= 100. logP; / P.,).

As we are interested in analysing whether marketiéd volatility data can add value in terms ofeoasting
realised currency volatility, we must adjust ouatistical computation of volatility to take intoaunt the fact
that, even if it is only the matter of a constantcurrency options markets, volatility is quotedainnualised
terms. As we also wish to focus on medium-termtildgiaforecasts (i.e. 1 and 3-month out), takilag,is usual
practice, a 252-trading day year (and consequenflf-trading day month and a 63-day trading quaries
compute the 1-month and 3-month volatility as thevimg annualised standard deviation of our loganith
returns and end up with the following historicalatdity measures for the 1-month and 3-month hamz

HVOL21, =252%% 50, 4|Sl
and:
HVOL63 = 252" 4, 1Sl

where | s|is the absolute currency returd). (For our experience, HVQh, and HVOIs3 are the realised 1-
month and 3-month currency volatilities that we iaterested in forecasting as accurately as passéither for
risk management or portfolio management purposmeSsummary statistics for these series over aictestr
sample through 31 December 1998 are shown in tébleand 5.2 below and figure 5.1 showing the liigar
returns for the 6 historical exchange rates.

DEM/JPY GBP/DEM GBP/USD USD/CHF USD/DEM USD/JPY
Mean 8.353 5.449 6.697 8.812 7.972 8.113
Std. Deviation* 3.543 2.522 2.846 2.850 2.802 3.394
Skewness 1.845 1.479 1.213 1.104 1.125 1.800
Kurtosis 8.982 7.208 4.841 4.518 4.754 7.355
Jarque-Bera 4155.66 2225.60 779.94 603.86 685.01 85.26
Probability 0.00 0.00 0.00 0.00 0.00 0.00

*Heteroskedasticity-consistent standard deviations
Table 5.1: Summary statistics of 1-month historical volatilifyJanuary 1991 - 31 December 1998)

DEM/JPY GBP/DEM GBP/USD USD/CHF USD/DEM USD/JPY
Mean 8.312 5.432 6.702 8.794 7.968 8.080
Std. Deviation* 2.809 2.062 2.454 2.319 2.260 2.728
Skewness 1.338 0.634 0.931 0.926 0.674 1.543
Kurtosis 5.466 3.128 3.252 3.577 3.164 6.128
Jarque-Bera 1113.64 136.82 296.91 316.72 155.31 4.662
Probability 0.00 0.00 0.00 0.00 0.00 0.00

*Heteroskedasticity-consistent standard deviations
Table 5.2: Summary statistics of 3-month historical volatilifyJanuary 1991 - 31 December 1998)

® We use absolute returns as a measure of curréamyasd deviations: our currency returns have mammnditional mean
enables us to use squared returns as a meastrofdriance.
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As we can see from tables 5.1 and 5.2, all seriesnan-normally distributed and often fat-tailedirther
statistical tests of autocorrelation, heteroskedfstand non-stationarity (not reported here irder to
conserve space) show that all 1-month and 3-mdastbrital volatility series exhibit strong autooslation and
heteroskedasticity but, whereas all 1-month vétietdl are stationary in levels, all 3-month voltigk are only
stationary when first differenced.

Looking at the volatility curves in figure 5.1,id clear that the exchange rates volatilities dohawe the same
behaviour. The exchange rate volatilities are,hat 21-day horizon, not as smooth as the 63-daytwri
Furthermore, those referring to Japanese currexigipié erratic behaviour. These remarks will contite to
build the expert a priori knowledge.

F!aalﬂe Histarical exchange rate volatility (21-day) Raétse Historical exchange rate volatility (63-day)

— Demdpy a0 4 — Demdpy

— UsdDem —— UsdDem
UsdChf 15 1 UsdChf
Ghplsd 104 GhplUsd

—— GhpDem M —— GhpDem

—— Usddpy 5 1 — Usdpy

u " ! ! ! 1] T T T T

101 151 201
210-day out-obsample forecasts ! ! 21B-da; DnLt-nf—samL?J fnrecastgm

Figure 5.1: KDD Application for studying 6 times series acdogito two horizons: 21-day and
63-day.

5.2 Volatility Models Processing

The predictive time series models of currency viithatused in this article are the ARMA (AR), GARC{dr
the Generalised Autoregressive Conditional Hetexdaktic model [59], [60]), the Stochastic Variag¥/,
[61], [63]) and some hybrid model combinations. Ma$ the retained modelling approaches are well
documented in the literature. The exact specificats provided in [62] with an exhaustive reviewtbése
models. The models are listed, both linear andlimear, that we have used for each time horizorsictamed.
Each original time series model is complementedabynixed’ version counterpart integrating the added
information provided by the relevant implied volifi data. The models are classified a priori irfibwr
categories:

1) Models notedlower: 4 models using ‘little information’, i.e. thentie series models are based on a
statistical analysis of past historical volatiliffhe general form is such that, at each petjoidr both
forecasting horizons n=21 days and n=63 days, eifumf delivers an estimation.i h., =f (HVOL,;)

 ModelGarch (1,1 based on variance of log-returns;

* Model AR(10): based on squared log-returns;
Model AR(10): based on absolute log-returns;
*  ModelSV(1): based on squared log-returns;

2) Models notedupper: the 4 above models using ‘more information’, itke implied volatility data noted
by IMP. The general form is such that, at eachquoirifor both forecasting horizons n=21 days and n=63
days, a functior delivers an estimation.f: h., =f (HVOL,;, IMPy)

 ModelGarch (1,1 based on variance of log-returns + implied \ititgt

* Model AR(10): based on squared log-returns + implied volgtilit
 Model AR(10): based on absolute log-returns + implied votsili
*  ModelSV(1): based on squared log-returns + implied volgtilit

3) Models notednaive: 2 models assuming that the past available fotqmawailing volatility level. The
data is normalised to give a variance level at geafodt, for both forecasting horizons n=21 days and
n=63 days.
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* ModelNaive-1 Actual annualised historical volatility calcudatby real value normalisation
such that p, = a.HVOL
 ModelNaive-2 Implied volatility normalised such that b= B3.IMP;;

4) Models notedSup”: 3 model combinations which average the resulth®fprevious models and therefore
encapsulate even more information. The general fsrsuch that, at each periddfor both forecasting
horizons n=21 days and n=63 days, a functidelivers an estimation.h: h.n = O f (hen” , HVOL, ,
IMPy).

* Average-1: model average of all previous models;
» Regression-weightedaverage of all previous models;
* Average-2: model average of all previous models except ‘wargitel;

There are 13 volatility models (noted VMs) timesurency volatilities, i.e. 78 VMs per forecastingrizon.
We resort to data mining tools to classify the 186s, as we try to identify those VMs that minimigelatility
estimation errors and/or volatility trend estimatierrors. To allow for comparisons, the 78 VMs are
normalised by the estimation errof Fand the trend estimation errog, Eusing the currency volatility HVOLn
such that:

Eml,t: HVOLN., - han
E™, 1= %2 [(HVOLN14n - HVOLN14n) = (Negan - eten)]

with m={1, ..., 78} (for each VM at the 21-day or @2y horizon), t={1, ..., 218} (for each out-of-sample
forecasting step) and n={21, 63} (for each forewasthorizon). We then look for the sety,Mof the VMs
which minimise the range of values fdF,g and E', ; and maximise the confidence interval:

Moptj = {M = {m O VM} | miny[max =1, ..., 218 nom Emj, t=MiN=1, . 218 nim Emj, d}

where j={1, 2}. The four charts in figure 5.2 shéov each forecasting horizon the estimation errgrahd the
trend estimation errorJ5of the 156 VMs. These charts illustrate how the etl®@dverlap. We will note by EE
the estimation error W;,and by TE the trend error J\..

E'ng Eztimation Error E1 Chorizon 21-day) Emor Eztim ation Error E1 (horizon §3-day)

218-day out-ofsample orecasts ’ 218-day nut-ofsample brecasts

Bror Trend Error B2 (horizon 63 day) Error Trend Error E2 (horizan 21-day)

. '\
01 il rﬁ&ﬂ%@ %:5’!'%* m}fﬁﬂ o1
15 2 a5 B 7? i 06 124 65 121 19\%42111

1| -4

'i ],

213-davy out-ofsample frecasts 218-day out-of sample Drecasts

Figure 5.2: Both Estimation Error (B and Trend Error (g for the 78 VMs according to the
two horizons: 21-day and 63-day.
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5.3 Data Analysis, Expert Construction Procedure ath Fusion

Having documented the 13 different models for thie time horizons considered, and produced dailyofut
sample estimations for the period 2 March 1998-&tdbnber 1998°), the Track Toolkit is used to manage
the time series data. The first step of our anslgencerns the building of forecasting accuracysmess using
the Temporal Data Management Module (TDMM), whidterfs the stream of rows. The second step is the
labelling process to integrate the a priori knowlked

5.3.1 Data Sources: The Error Time Series Measured

Using the TDMM module of the Track data mining fdatn, we compute M=8 basics and well-known
statistical measures involving scalar values awdiisg the accuracy level of the 156 VMs. We alse ssveral
other ‘intermediate’ variables, such as the vagaatthese errors, their absolute value, etc (aptaduced
here to conserve space). We use the following ata@ntheasures taken from the statistical literature:

Error Measures Opt. Value|21-day horizon | 63-day horizon
Min Max | Min Max
Root Mean Square Error (RMSE) 0 1.41 19.40 1.03 .158
Mean Absolute Error (MAE) 0 1.14 11.37 0.9 23.27
Mean Absolute Percentage Error (MAPE) 0 0.16 0.78.140 | 1.91
Mean Square Error On Realisation (Theil Y) 0 0.11| .440 | 0.100 | 0.91
Estimation Error (EE) 0 -9.19 7.76 -9.57 9.89
Trend Error (TE) 0 -0.047 | 0.02 -0.08 0.01
Student Test (ST) 0 0.000 109.p 0.003 458.7
Fisher-Snedecor Test (FST) 1 1.010 1497 1.062 170Q

Table 5.3.1: Measures provided by statistical filters scorihg accuracy levels of the 156 VMs.

Each one of these variables gives us a basis ugichwhe volatility forecasts are compared acrdss t
different models that we use. For the 8 error stiat chosen, the lower the output, the betterfdhecasting
accuracy of the model concerned (the optimal vadhesvn in table 5.3.1 indicate a perfect fit).

5.3.2  Expert Analysis

For our application, we use the three followingl$osimple experts, decision trees (ALICE), andwstering
tool. The use of each tool depends on the complitguestions involved in the depth-processf knowledge:
a simple expert for a specific questian=1), the researched questions delivered by ALICE i depth-
process 1<m <M, and finally general questions using the claste tool with m virtually equal to M. The
clustering tool involves a classification constadtfrom a principal component analysis. Therefaregxpert
is the outcome provided by a data mining tool thauided by specific parameters.

The application uses 7 experts. The SOFI modulsutmeach expert and evaluates its informatioriecas.
Each expert is associated with the evaluation nmeasoted Energy. Each expert is designed for destoy a
specific knowledge:

- Expert-Info classifies the 13 models according to its compjexi is gathering the 4 basic models
are noted lbwer, the 4 models using more information, i.e. theplied volatility data are noted
‘uppet, the 2 models are noteadive ("inert" models) and, finally, the 3 model combtions are
noted sug. These models are grouped independently of tmeenay volatilities. We look for groups
of models which have a particular and common behawyi

- Expert Money gathers all models according to the 6 currencwtilitles, especially regarding the
Japanese exchange rate.

- Expert-Model consults the VMs on a model by model basis.

- Expert-Alicel pools the VMs according to the MAE, RMSE, MAPE, artteil U when associated
with the EE variable. The ALICE decision tree, st by the users, provides different solutions for
each horizon.

" This produces a total of 34 008 forecasts, i.e.vatility models times 2 forecasting horizons &8n6 currency
volatilities times 218 forecasting steps.
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- Expert-Alice2 gathers the VMs according to the EE variables caetpavith the TE variables. The

ALICE decision tree produces different solutionsdach horizon.

- Expert-Cluster3Cl delivers 3 classes with the aim to explain thenm e 8 errors measures.
- Expert-Cluster4Cl delivers 4 classes with the aim to explain thenm it 8 errors measures.

Table 5.3.2 summarises the result of the evaluaifaeach expert associated with the respectiveggnsalue,

the number of the class and shows the depth-prougsberm of variables which have the most powerful
discrimination value. The respective energy measearg is calculated from the function (this value is
reported in the table of each expert). Assuming ttiexp function measures the dependence between classes,
class becomes a rule if the variables explain ¢lets. Therefore, a class exhibits a particular Mdaviour
associated with its Label Meaning and the variatilas explain the class. The tables give, for dabhbl class,
the variables accepted by the Chi-Square test lagid probability measure. The probability is giviey the
percentage of identifiers in the class comparett vdentifiers into the Min-Max truncaturélj O {1,...,M},

Ny /N (see formula (5)).

Expert 21-day horizon 63-day horizon
Class Number| Energy| Depth-Proce$s Class Nufifbeergy | Depth-Process

Expert-Info 4 45.84 1 4 45.86 1
Expert-Money 5 33.56 1 5 33.44 1
Expert-Model 13 38.33 1 13 40.37 1
Expert-Alicel 7 27.48 4 4 34.37 4
Expert-Alice2 5 29.86 5 6 32.80 4
Expert-Cluster3Cl |3 24.88 3 3 23.77 3
Expert-Cluster4Cl |4 25.65 3 4 27.17 3
SOFI 5 19.57 5 3 19.82 6

Table 5.3.2: For the two horizons, the SOFI process combines/tiexperts to find the energy minimum. For
the two applicationsExpert-Cluster3Cl produces the classification with the most powediscrimination
(energy 24.88 and 23.77). TBOFI result provides a classification which minimisks gfunction (19.57 for

the 21-day horizon and 19.82 for the 63-day horjzord greater the value of.

5.3.3

A Priori Knowledge Data: Expert Analysis

The SOFI output associates SPSS graphical viewaf expert-classification. That is done by therBatision
plan coming from the first and second componentBrafcipal Component Analysis. The experbdel is not
reported because gives not visual information. Whiita is approximately close to the null vectettdy is the
solution and prediction of the model. For the 2¥-tarizon, the twice components explain 68% of stae
projection and the 72% of the state projectiontfer 63-day horizon. The following part details tgert-
classifications for the two horizons.

5.3.3.1 21-day horizon:

Factor 1

Expert-Infi

A Upper
O sub

Naif

O Lower

Factor 2

4

Factor 1

Expert-Money
usddem

<] usdchf

X JAPONESE MONEY

gbpusd

& gbpdem

Factor 2
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The Expert-Info shows that the “Lower” models fasts bad the currency volatilities. The Expert Mone
produces what was expected for the Japanese cyrrerie the models are not accurate in face oftierra

volatilities. The data confirms the a priori knoddge. The other currency volatilities do not exhiaity
particular behaviour when they are taken separately
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Expert Alice 1 gathers into 7 classes of which &sés have significant discrimination measuremditis.
label class indicates the meaning (“+EE” meanselaEgrors Estimation) of each class according to the
accuracy level of the statistical measures. ClaBg+Stat/-MAPE” shows 18 models with particulariyogl
statistical measures that are close to zero. Explite 2 gathers into 5 classes, which have sigaift
-Both EE and 3ows 9 models with particularly good measures

discrimination measurements. Class

closed to zero.
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Into 3 or 4 classes, its experts separate thesstatording to the whole of the errors measures.ldv energy
value of this expert is explained by a discrimioatover all the 8 errors measures (not reported imeorder to

conserve space).

For the 21-day horizon, fusion provides 5 classhihvare shared between these following expertpeEx
Money, Expert-Alice-1 and Expert-Alice-2. The follimg tables and figure detail the classificatioaulés. A
range of variables that are associated with higibabilities explains each class. Each SOFI classtéadly or

partially matched with a class of an expert. Thec@etage appearing in the table represents the ranoban
expert label belonging to a given class.
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Estimation Error E1 (21-day Horizon)

SOFI i5 Class 2

ﬁg Exp-Money-ClI1: Japan 10 4 Ww/
A ese Yen DEM-USD/JPY . W A}\%
o . " |
[ Exp-AL2-CI5: Both go . - - N‘fﬁu :

X K od EE and TE
X ;% X Exp-AL2-CI2: +TE -EE
Exp-AL1-CI3-AL2-CI3:
+EE and +Statistics

A Exp-AL1-Cl1-AL2-Cl1:

Factor 1

218-day out-ofsample forecasts

-2 +TE +EE -Statistics
2 1 0 1 2 3 4
Factor 2
Figure 5.3.3.1:the Min-Max E1 truncature is given
for the three classes which can be grouped ingethr
behaviours: good, poor and other models.
5 Classes 21-day horizon: Energy 19.57
Label Class Variable Probability Min Max
CLASS 1: Expert Money RMSE 0.743 5.049 19.40
99.8% Class 1 MAE 0.743 4.4126 11.3797
Japanese YeDEM/JPY and USD/JPY
CLASS 2: Expert Alice 2 RMSE 0.854 1.60730 5.04360
100% Class 2 MAE 0.854 1.27480 4.22530
35 VMs: Good TE and Poor EE EE 0.603 41634 |3.57880
CLASS 3: Hybrid Expert Alice 1 (Cl 1) | MAPE 1.00 0.90480 1.03390
and Alice 2 (Cl 1) Theil U 0.667 0.29160 0.33480
4 VMs: Poor TE, Poor EE and Poor EE 1.00 5.47500 6.62960
Statistics
CLASS 4: Hybrid Expert Alice 1 (CI 3) |RMSE 0.833 7.26380 7.85270
and Alice 2 (CI 3) MAE 1.00 7.12950 7.73130
5 VI\_/Is_: Poor TE, Poor EE and Poor '\EAEAPE 1188 %Zﬁ;gg #g’gggg
Statistics
CLASS 5: Expert Alice 2: Theil U 0.627 0.12060 0.20770
100% Class 5 EE 0.50 -0.9551 1.24450

9 VMs: both Good EE and TE

For the 21-day horizon, erratic currencies canedtdxplained” by a small number of rules. Clase@ elass 4
emphasise two particular groups explained by thdaisoAR(10): "Lower" and "Upper" which are consielr
poor. Classes 1, 2 and 5 gather three particulsabeurs: Class 1 concentrates Japanese Yen it@aticlass
2 of the poor VMs for currencies other than theadese Yen, and class 5 which concentrates 9 goasl VM

5.3.3.2 63-day horizon:
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The Expert-Info shows that the “Lower” models fasts bad the currency volatilities. The Expert Mone
produces what was expected for the Japanese cyrrerie the models are not accurate in face oftierra

volatilities. The data confirms the a priori knoddge. The other currency volatilities do not exhiaity
particular behaviour when they are taken separately
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Into 3 or 4 classes, its experts separate thesstiatording to the whole of the errors measures.ldiv energy
value of this expert is explained by a discrimioatover all the 8 errors measures (not reported imeorder to
conserve space).

For the 63-day horizon, fusion provides 3 clasbases] between two experts: Expert-Cluster4Cl areEx
Alice-1.

[Ué] Egor Estimation Errar E1 (B3-day horizan)

Class 3

0 8 SOFI

O Exp-Clust4clo: -Stat
istics
Exp-Clust4CI-CI1: +T
E-EE

O Exp-AL1-Cl1: +Statis

218-day out-of-sample forecasts

Factor 1

-1 tics

Factor 2

Figure5.3.3.2: the Min-Max E1 truncature is given
for the three classes which can be grouped integhr
behaviours: good, poor and other models.

3 Classes 63-day horizon: Energy 19.82
Label Class Variable Probability | Min Max
CLASS 1: Expert Alice 1 RMSE 1.00 6.2233 |158.198
100% Class 1 MAE 0.852 41342 |23.2794
23 VMs: Poor Statistics
CLASS 2: Expert Cluster4Cl 'VK\F_;E 0.681 0.20930 0.39340
99% Class 1 Theil U 0.621 0.11810 0.19590
EE 0.694 -1.0346 | 2.45330
18 VMs
CLASS 3: Expert Cluster4Cl | RMSE 0.712 1.0300 |[4.94410
0 MAE 0.6.61 0.9000 |4.61890
23 @ﬁlass 0 EE 0.627 -4.5506 | 4.64020
S ET 0.617 -0.0078 | 0.01480
ST 0.578 0.9416 |23.3389
FST 0.507 1.0763 |52.4310

For the 63-day horizon, the VMs are grouped intedhclasses. Good models for the GBP/DEM, GBP/USD
and USD/DEM volatilities (Class 3: 37 VMs), poor dats for other volatilities (Class 1: 23 VMs) anaod
models for the Japanese Yen and USD/CHF volatlii@ass 2: 18 VMs).

We conclude looking at the results according toZtmerizons. For the 21-day horizon, the best giauplves

an effective set of models, which could be usefbtecast volatilities. The classification at the@dy horizon

is highly dependent on the VM behaviours and thgadase Yen specificity. The classification at tBed@y
horizon is heavily relies on the currency dimensitie best group discriminates well between cuiesnalso

it is not accurate for forecasting purpose.

6 CONCLUSION

In this paper, we have presented the SOFI modtlis. & software which can be integrated on evera da
mining platform gathering several data mining toolhe SOFI module is a multi-classifier merging
classifications in an associative way. It is espigcidesigned for the Knowledge Discovery in Datsdsa
problem for which a priori information is integrdtetep by step. After accumulating it, the user tpaisk
access to a synthetic result and can rebuild a tenpnalysis.
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For the application above, the fusion process rmédiate (a few seconds using a standard PC witm#umm
processor). Having both the source data and ai plada, the SOFI model makes the link between ghialzel
classes (or nodes) defined by the 7 experts an¥NMhe data. Section 5.3 above has shown the infaomalt
quality integrated and distributed over the expefsth a logical labelling of the classes, the SOfddel
allows for a methodical search of the knowledgeléidin the data.

For the two horizons, the stochastic process maggmthe function and provides the classificatiat tas the
best discrimination measure. The fusion procesdsstsith the estimation of the temperature (see ISOF
algorithm, section 4). Figure 6.1 shows the enamggimisation steps of the fusion process for the tw
horizons: energy equal to 19.57 for the 21-dayzwriand equal to 19.82 for the 63-day horizon.

Ellfjnergy Simulated Annealing (21-day horizon) Egsrgy Simulated Annealing {B3-day harizan)

jg y TP SV . S ZE f MJ\JM‘ b A

B TV (e N 77t N Y VAR TR AT NN
20 ! iy 20 \L\‘
10 10

i

T T T T T T T T T 1] T T T T T T T
1 511071 181 201 251 301 351 401 451 1 51 11 151 2m 251 a1 351

Figure 6.1: The SOFI process produces the minimum of energy 482 steps for the 21-day
horizon and398 steps for the 63-day horizon.

We have seen that the SOFI process is unsuperaisdaon-parametric. Each classifier is directlynested
from the data as proposed in [9]. The algorithmwsha lower computational processing time. The
minimisation procedure depends on the strategggearch the optimal solution. In a future, we slilbw how

to perturb the R classifications. We have testedersé strategies such as the K-means regarding node
aggregation. The scheme called Expert-Class agipagapresented here, provides results that always
outperform other strategies. Here, the robustnESO& | for our time series application has beerduatad by

the fusion of other experts (random classificatierpert clustering with 5 and 6 classes) which hawe
modified the final result.

In this article, the fusion module has been userlassify forecasting models. It has also been bydihancial
institutions to combine experts in order to optenithe resolution of Automatic Teller Machine (ATM)
problems, score clients for marketing and analgsepbral customer characteristics. All these apfitina
allow us to evaluate SOFI performances which gpented below in table 6.1.

NB of Variables| NB of Hoxels DECAlpha 8200| Pentium MMX 233| Nb Processep
6 30 1 seconds 2 seconds 1 process

8 57 3 seconds 8 seconds 1 process
20 57 11 seconds 21 seconds 3 processep
50 57 53 seconds 102 seconds 3 processes
200 57 2 minutes 5 minutes 3 processes

Table 6.1: Performance model for SOFI process. This tabjmres CPU time for the Unix System (DECAIpha
8200) and on PC (Pentium MMX 233). The time reseusccollected according to the number of variables
which must be optimised and the number of Hoxeilgh(I®rder of Pixels and the number of nodes of grap
G). Also, the number of processes needed to hawgldbal minimum of energy is reported.

The good CPU time performances are due to the Brabfe process used to find the minimum amount of
energy. The D-separable property barely affectsitireber R of experts, and, consequently, the numbere
nodes in graph G. Effectively, we have seen thatome application, few rejected case of data stramm
rejected after the optimisation phase. Then, wgeptoto observe precisely the result by measurhmg t
ignorance and the noising classes into the séteoflata with the Belief Network formalism (APRIOU).

The fusion module is useful when there is a larghime of data but also with an increasing number of
analyses. Then, the key is to know how to combiifferdnt points of view taken from the data in arde
produce a global and a synthetic view. Fisher hasva that a set of information accumulated redukesisk
decision. The biological and artificial real exampituitively show that the functionality procesdaulates and
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combines both data volume and compatible knowlédgeder to increase the validity of a decisioneT3OFI
model does that according to this definition ofidns “the human system which calls upon its difféareenses,
its memory and its reasoning capabilities to penfdeductions from the information it perceives”][37

SOFI has be integrated into the Track Toolkit Platf and it will be study the integration for OLARtd
mining platform. Future works will be around, firgd text mining application where SOFI process hdae
able to help for the user-end integrating the arpknowledge they have about the documents comitéiite
second kind of application will be dedicated foe fimplementation for real-time processing integigtiime

series analysis for detecting at each time the freslicting model set and estimating the risk penfnce.
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